570 research outputs found

    Statistical Analysis of Federal District Court Cases Seeking Longer Patent Term Adjustments in the Wake of Wyeth v. Kappos, 10 J. Marshall Rev. Intell. Prop. L. 1 (2010)

    Get PDF
    Over 175 Federal District Court cases filed from September 2008 through July 2010 were analyzed to determine common features noted by applicants seeking longer patent term adjustments (“PTAs”) in view of a Federal District Court ruling, later affirmed by the U.S. Court of Appeals for the Federal Circuit in Wyeth v. Kappos, which held that the United States Patent and Trademark Office (“PTO”) misinterpreted a statute relating to the calculation of PTAs involving overlapping periods of delay attributable to the PTO or to the applicant. Applicant and PTO errors in calculating PTAs were common, often relating to counting errors due to the mischaracterization of events that occur at the beginning or end of specific delay periods. Asymmetries were also noted in the treatment of delay periods encountered in the prosecution of national phase applications based on earlier-filed international applications, compared to applications which take priority only to earlier-filed U.S. applications. Common patterns of delay were noted, and practices that minimize Applicant Delay, maximizing effective PTA, are highlighted. Despite the intent of Congress to compensate applicants for delays in prosecution in an industry-independent manner, applicants seeking reconsideration of a patent term adjustment in Federal District Court are highly-biased toward institutions seeking patents on pharmaceutical and related biotechnology inventions. Unlike patent term extensions, which are sought in a six-month period prior to regulatory approval and sale of a pharmaceutical product, and often long after a patent has issued claiming the product, court cases identifying patents needing longer PTAs provide early notice to the public, including investors and competitors, of technologies considered to have particular value to the applicant. Understanding the complex calculations behind PTAs, patent term extensions, and expiration dates, is key to the development of successful scientific, legal, and business strategies involving licensing and ownership of patented technologies

    Reservation-based Resource-Brokering for Grid Computing

    Get PDF
    In this paper we present the design and implementation of the Migol brokering framework. Migol is a Grid middleware, which addresses the fault-tolerance of long-running and compute-intensive applications. The framework supports e. g. the automatic and transparent recovery respectively the migration of applications. Another core feature of Migol is the discovery, selection, and allocation of resources using advance reservation. Grid broker systems can significantly benefit from advance reservation. With advance reservation brokers and users can obtain execution guarantees from local resource management systems (LRM) without requiring detailed knowledge of current and future workloads or of the resource owner’s policies. Migol’s Advance Reservation Service (ARS) provides an adapter layer for reservation capabilities of different LRMs, which is currently not provided by existing Grid middleware platforms. Further, we propose a shortest expected delay (SED) strategy for scheduling of advance reservations within the Job Broker Service. SED needs information about the earliest start time of an application. This is currently not supported by LRMs. We added this feature for PBSPro. Migol depends on Globus and its security infrastructure. Our performance experiments show the substantial overhead of this serviceoriented approach

    Application-Oriented Benchmarking of Quantum Generative Learning Using QUARK

    Full text link
    Benchmarking of quantum machine learning (QML) algorithms is challenging due to the complexity and variability of QML systems, e.g., regarding model ansatzes, data sets, training techniques, and hyper-parameters selection. The QUantum computing Application benchmaRK (QUARK) framework simplifies and standardizes benchmarking studies for quantum computing applications. Here, we propose several extensions of QUARK to include the ability to evaluate the training and deployment of quantum generative models. We describe the updated software architecture and illustrate its flexibility through several example applications: (1) We trained different quantum generative models using several circuit ansatzes, data sets, and data transformations. (2) We evaluated our models on GPU and real quantum hardware. (3) We assessed the generalization capabilities of our generative models using a broad set of metrics that capture, e.g., the novelty and validity of the generated data.Comment: 10 pages, 10 figure

    Extrafloral nectaries in Leguminosae: phylogenetic distribution, morphological diversity and evolution

    Get PDF
    Extrafloral nectaries (EFNs) mediating ecologically important ant-plant protection mutualisms are especially common and unusually diverse in the Leguminosae. We present the first comprehensively curated list of legume genera with EFNs, detailing and illustrating their systematic and phylogenetic distributions, locations on the plant, morphology and anatomy, based on a unified classification of EFN categories and a time-calibrated phylogeny incorporating 710 of the 768 genera. This new synthesis, the first since McKey (1989)?s seminal paper, increases the number of genera with EFNs to 152 (20% of legumes), distributed across subfamilies Cercidoideae (1), Detarioideae (19), Caesalpinioideae (87) and Papilionoideae (45). EFNs occur at nine locations, and are most prevalent on vegetative plant parts, especially leaves (74%) and inflorescence axes (26%). Four main categories (with eight subcategories) are recognized: formless, trichomatic (exposed, hollow), parenchymatic (embedded, pit, flat, elevated) and abscission zone EFNs (non-differentiated, swollen scars). Phylogenetic reconstruction of EFNs suggests independent evolutionary trajectories of different EFN types, with elevated EFNs restricted almost exclusively to Caesalpinioideae (where they underwent spectacular morphological disparification), flat EFNs in Detarioideae, swollen scar EFNs in Papilionoideae, and Cercidoideae is the only subfamily bearing intrastipular EFNs. We discuss the complex evolutionary history of EFNs and highlight future research directions.Fil: Marazzi, Brigitte. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Nordeste. Instituto de BotĂĄnica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de BotĂĄnica del Nordeste; Argentina. Natural History Museum Of Canton Ticino; SuizaFil: GonzĂĄlez, Ana MarĂ­a. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Nordeste. Instituto de BotĂĄnica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de BotĂĄnica del Nordeste; ArgentinaFil: Delgado Salinas, Alfonso. Universidad Nacional AutĂłnoma de MĂ©xico; MĂ©xicoFil: Luckow, Melissa A.. Cornell University; Estados UnidosFil: Ringelberg, Jens J.. Universitat Zurich; SuizaFil: Hughes, Colin E.. Universitat Zurich; Suiz

    A performance characterization of quantum generative models

    Full text link
    Quantum generative modeling is a growing area of interest for industry-relevant applications. With the field still in its infancy, there are many competing techniques. This work is an attempt to systematically compare a broad range of these techniques to guide quantum computing practitioners when deciding which models and techniques to use in their applications. We compare fundamentally different architectural ansatzes of parametric quantum circuits used for quantum generative modeling: 1. A continuous architecture, which produces continuous-valued data samples, and 2. a discrete architecture, which samples on a discrete grid. We compare the performance of different data transformations: normalization by the min-max transform or by the probability integral transform. We learn the underlying probability distribution of the data sets via two popular training methods: 1. quantum circuit Born machines (QCBM), and 2. quantum generative adversarial networks (QGAN). We study their performance and trade-offs as the number of model parameters increases, with the baseline of similarly trained classical neural networks. The study is performed on six low-dimensional synthetic and two real financial data sets. Our two key findings are that: 1. For all data sets, our quantum models require similar or fewer parameters than their classical counterparts. In the extreme case, the quantum models require two of orders of magnitude less parameters. 2. We empirically find that a variant of the discrete architecture, which learns the copula of the probability distribution, outperforms all other methods

    W(h)ither Fossils? Studying Morphological Character Evolution in the Age of Molecular Sequences

    Get PDF
    A major challenge in the post-genomics era will be to integrate molecular sequence data from extant organisms with morphological data from fossil and extant taxa into a single, coherent picture of phylogenetic relationships; only then will these phylogenetic hypotheses be effectively applied to the study of morphological character evolution. At least two analytical approaches to solving this problem have been utilized: (1) simultaneous analysis of molecular sequence and morphological data with fossil taxa included as terminals in the analysis, and (2) the molecular scaffold approach, in which morphological data are analyzed over a molecular backbone (with constraints that force extant taxa into positions suggested by sequence data). The perceived obstacles to including fossil taxa directly in simultaneous analyses of morphological and molecular sequence data with extant taxa include: (1) that fossil taxa are missing the molecular sequence portion of the character data; (2) that morphological characters might be misleading due to convergence; and (3) character weighting, specifically how and whether to weight characters in the morphological partition relative to characters in the molecular sequence data partition. The molecular scaffold has been put forward as a potential solution to at least some of these problems. Using examples of simultaneous analyses from the literature, as well as new analyses of previously published morphological and molecular sequence data matrices for extant and fossil Chiroptera (bats), we argue that the simultaneous analysis approach is superior to the molecular scaffold approach, specifically addressing the problems to which the molecular scaffold has been suggested as a solution. Finally, the application of phylogenetic hypotheses including fossil taxa (whatever their derivation) to the study of morphological character evolution is discussed, with special emphasis on scenarios in which fossil taxa are likely to be most enlightening: (1) in determining the sequence of character evolution; (2) in determining the timing of character evolution; and (3) in making inferences about the presence or absence of characteristics in fossil taxa that may not be directly observable in the fossil record. Published By: Missouri Botanical Garde

    Stratified Abstraction of Access Control Policies

    Get PDF
    The shift to cloud-based APIs has made application security critically depend on understanding and reasoning about policies that regulate access to cloud resources. We present stratified predicate abstraction, a new approach that summarizes complex security policies into a compact set of positive and declarative statements that precisely state who has access to a resource. We have implemented stratified abstraction and deployed it as the engine powering AWS’s IAM Access Analyzer service, and hence, demonstrate how formal methods and SMT can be used for security policy explanation

    Hybrid capture of 964 nuclear genes resolves evolutionary relationships in the mimosoid legumes and reveals the polytomous origins of a large pantropical radiation

    Get PDF
    PREMISE Targeted enrichment methods facilitate sequencing of hundreds of nuclear loci to enhance phylogenetic resolution and elucidate why some parts of the “tree of life” are difficult (if not impossible) to resolve. The mimosoid legumes are a prominent pantropical clade of ~3300 species of woody angiosperms for which previous phylogenies have shown extensive lack of resolution, especially among the species‐rich and taxonomically challenging ingoids. METHODS We generated transcriptomes to select low‐copy nuclear genes, enrich these via hybrid capture for representative species of most mimosoid genera, and analyze the resulting data using de novo assembly and various phylogenomic tools for species tree inference. We also evaluate gene tree support and conflict for key internodes and use phylogenetic network analysis to investigate phylogenetic signal across the ingoids. RESULTS Our selection of 964 nuclear genes greatly improves phylogenetic resolution across the mimosoid phylogeny and shows that the ingoid clade can be resolved into several well‐supported clades. However, nearly all loci show lack of phylogenetic signal for some of the deeper internodes within the ingoids. CONCLUSIONS Lack of resolution in the ingoid clade is most likely the result of hyperfast diversification, potentially causing a hard polytomy of six or seven lineages. The gene set for targeted sequencing presented here offers great potential to further enhance the phylogeny of mimosoids and the wider Caesalpinioideae with denser taxon sampling, to provide a framework for taxonomic reclassification, and to study the ingoid radiation

    Quantum Computing Techniques for Multi-Knapsack Problems

    Full text link
    Optimization problems are ubiquitous in various industrial settings, and multi-knapsack optimization is one recurrent task faced daily by several industries. The advent of quantum computing has opened a new paradigm for computationally intensive tasks, with promises of delivering better and faster solutions for specific classes of problems. This work presents a comprehensive study of quantum computing approaches for multi-knapsack problems, by investigating some of the most prominent and state-of-the-art quantum algorithms using different quantum software and hardware tools. The performance of the quantum approaches is compared for varying hyperparameters. We consider several gate-based quantum algorithms, such as QAOA and VQE, as well as quantum annealing, and present an exhaustive study of the solutions and the estimation of runtimes. Additionally, we analyze the impact of warm-starting QAOA to understand the reasons for the better performance of this approach. We discuss the implications of our results in view of utilizing quantum optimization for industrial applications in the future. In addition to the high demand for better quantum hardware, our results also emphasize the necessity of more and better quantum optimization algorithms, especially for multi-knapsack problems.Comment: 20 page
    • 

    corecore